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An Application of the Moment Method to

Waveguide Scattering Problems

SIEN-CHONG WU AND Y. LEONARD CHOW

Absfract—A moment method is suggested to solve scattering

problems in waveguides. It takes advantage of the localized nature
of the evanescent waves to assure the convergence of the solutions.

The method chooses the point-matching approach with pulse basis

functions so that it may be versatile and can be applied to discon-
tinuities of an arbitrary shape. To illustrate this method, examples

are given for open-ended parallel-plane waveguides, both flanged
and unflanged, and for waveguides with obstacles of various shapes.
Comparisons are made with solutions by other approaches and,
whenever possible, with exact solutions. The agreements are good.

1. INTRODUCTION

P

ROBLEMS of scattering by discontinuities in

‘ waveguides have been widely studied in the past

decade. Except for a few special discontinuities,

exact solutions are not available and approximate

methods have to be used. The ray theory has been ap-

plied to the regularly shaped discontinuities in a wave-

guide by Yee and Felsen [1]. A similar theory has also

been applied to open-ended waveguides, both flanged

and unflanged, by Lee [2], Yee, Felsen, and Keller [3]

as well as Rudduck and Tsai [4]. For flanged wave-

guides, I toh and Mittra have been able to give a more

rigorous solution by a modified residue calculus tech-

n~ue [5].

All the above approximate methods are restricted to

regular discontinuities such as sharp edges linked by

reasonably long and straight boundaries. A more versa-

tile method is needed for arbitrary boundaries and

closely spaced edges. In open space, the moment method

has been applied to solve scattering problems of obsta-

cles with finite sizes [6]. The extension to scattering by

a semi-infinite plate has recently been made by Morita

[7]. Using a similar procedure, this investigation further

extends the moment method to the closed space inside a

waveguide which has infinitely long walls along the

propagation direction.

The procedure is the following: first, the propagating

wave in a waveguide is considered to be a plane wave

bouncing off the walls of the waveguide. When this

bouncing wave meets the discontinuity, the scattered

field occurs. This field is then decomposed into the re-

flected, transmitted, and evanescent waves. The re-
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fleeted and transmitted waves are again represented by

plane waves with the reflection and transmission coeffi-

cients R and T. The evanescent wave is represented by

the extra induced current density on the conducting

surfaces which is localized at the discontinuity. The

moment method with the point-matching approach [6]

can then be applied to solve the coefficients R and T and

the induced current density, The basis functions of the

method are kept simple in the form of unit pulses. The

approach and the basis functions are chosen to prepare

the moment method for an arbitrarily shaped discon-

tinuity. The convergence from such procedure is as-

sured since the effects of the induced currents from the

plane waves are analytically integrable and the basis

functions are needed only to numerically calculate the

effects of the evanescent wave. As the evanescent wave

decays exponentially from the discontinuity, the basis

functions are required to cover only a finite space. This

has the effect of reducing the infinitely long walls of the

waveguide to finite ones.

II. FORMULATION

Let us assume that a TEo1 mode wave propagates in a

parallel-plane waveguide of infinite extent. The field

can be considered to be a plane wave bouncing off the

upper and the lower waveguide walls with an angle

0 = sin–l (X/2d) as shown in Fig. 1. The fields of the

plane-wave incident on the lower waveguide wall can

be written as

(1)Ei = ~ exp [jk(xcos61 + y sin 0)]

and

H; = (–2sinfJ + jcos19) ~exp ~k(xcosO+ ysin O)] (2)

n

where q = (p/e) 112 is the intrinsic impedance of the me-

dium in the waveguide. On the lower waveguide wall a

current density

r-,

is induced. The current density induced on the upper

wall is identical to that on the lower wall.

If an obstacle is located in the waveguide, a fraction

of the incident field is reflected and the remainder trans-
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Fig. 1. Propagating plane wave in a parallel-plane waveguide.

mitted. For simplicity, we shall limit the spacing be-

tween the two plates d such that all higher modes are

cut off. The current densities induced by the reflected

and transmitted waves, with coefficients R and T, are

J“ = 2R f sin 0 exp (–jkx cos 0),

x> O,y=O, and y=d (4)

and

J’ = iT ~ sin O exp (jkx cos O),

x< O,y=O, and y=d. (5)

In addition, a current density Y = iJ.e corresponding to

the evanescent wave exists at, and in the vicinity of, the

discontinuity. Each of these current-density components

contributes to the transverse E-field in the waveguide.

In order to satisfy the boundary condition that tangen-

tial electric field E. vanishes on a conductor, the follow-

ing integral equation is established [6]:

where r and r! are the coordinates of the field points and

of the source points on the conductor. The integral path

c is along the surface of the obstacle and the nearby

waveguide walls and the integral path w is along all

relevant waveguide walls, i.e., to the right of the dis-

continuity for J.i and J=’, and to the left for J.t.

With arbitrary obstacles, (6) cannot be solved ex-

actly. The moment method can, however, be used to ob-

tain an approximate solution. First, we shall choose the

point-matching approach with basis functions in the

form of unit pulses. This is in effect dividing the integral

path c into N segments each with an unknown current

density J. [6]. Substituting (3), (4), and (5) into (6) we

have a linear equation with N+ 2 unknowns, J~, Jz,
. . . . JN, R, and T. The required N+ 2 test field points

are selected on the conductor so that N of them coincide

with the N source points at the centers of the segments

along c, and another two at distant points along the

walls. Therefore N+ 2 linear equations are established

and can be written in the following matrix form [[5]:

[L?,.]fjm]=[gm] (7)

where l~,n, fm,and g~ will be given below.

For the operator elements l~,., with m =1, 2, . . , ,

N+2 and with n=l, 2, . . ., N, we have

[( A(krn’)
lm,% = l–j? ln— +’y-l )1A(krm’),

T 4

ifm=n (9)

with ;{=0.5772157 . . . . In addition, with n = lV+ 1

and N+ 2 corresponding to R and T, we have

lm,N+I= +%(0,@,j%)+ 1-(0, co, d – Yin)] (lo)

lmI,N+,= ~ [l+(–@,o,Yrn) + 1+(- @,o,d– Yin)](10

where

sb

I*(a, b, y) = exp ( i-jkaf cos 0)IIOf2)
a

. [k((x’ - xm)’ + yz)’lz]d(kaf). (12)

For incident field elements g~ and other induced field

elements fm we have

gm=– ~ [I+(O, co, Y~) + ~+(o, ~, d – Yin)] (13)

and

1:Jm, form =1,2, . . ..N

(14)

[T, form= N+2.

The analytical integrals 1* in (10), (11), and (12) are

of a semi-infinite type with very slow convergence. Be-

fore numerical computations they should be converted

into a more convenient form. First, the replacement of

x’ by --x’ in (12) changes the integration limits in (11)

into (O, cc ). Then all the six integrals above have a

similar form of 1+(0, co, y). With X = kx’, X~ = kx~, and

1’= ky,~ or k (d – y~), the integrals can in turn be divided

into t~’o parts, that is

{so
Ii = exp ( -ljX~ cos 0) exp ( +-jX cos 0)Hot2)

–Xm

Pm

. I:(X2+ Y2)1’’]dX + I exp (-&jX cos e)~,fzl

}
. I.(X’ + Y’) ‘/2]dx . (15)
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It has been shown by Morita [7] that with the lower

sign the second integral of the above can be written as

sm

exp (—jX cos O) HO(z) [(X2 + Y2)l/2]dX
o

sY

.—
~ exp (–X cos 0) HO(21[(Y2 — X2)l/2]dX

o

+ ~exp (– Ycos O)
n’

1

{(

2 Cos e 1
.—

2 cos e

–7+]~—. –

Y 2Yc0se )

+ f “ [Ko((x’ + 217x)’/2) + 7
0

Yx
+~ln 1 }~ +: exp (–X cos O)dX . (16)

The last integral in (16) is a standard form of Gauss–

Laguerre quadrature which is easily computable [8].

Also with the upper sign the second integral in (15)

can be reduced to

sc-a

exp (jX cos L9)Hoc2j [(X2 + Y2) 112]dX
o

sm

—— exp (jX cos 0)Ho(2J [(X2 + Y2) lf2]dX
—co

So—exp (jX cos O)Ho(z) [(X2 + Y2)112]dX
—co

2
. — exp (–~ Y sin 0)

sin e

sm

— exp (—jX cos 0)HO(2) [(X2 + Y’) 1/2]dX. (17)
o

The second term of the reduced fen-m is actually the inte-

gral of the left-hand side of (16). Therefore, with the help

of (16) and (17), the integrals in (10), (11), and (13) are

all convertible to integrals which can be numerically

computed.

In many applications Y= O, and (16) and (17) are

analytically integrable. They are, respectively,

sm 20
exp (–jX cos 0) Ho(2) (X)dX = — (18)

o ~ sin 0

and

sm 2(7i- – e)
exp (jX cos @Hof2J(X)dX = . (19)

o r sin e

With either analytical or numerical integrations of

(10), (1 1), and (13), all of the 1~,,, and g~ are determined

and may be substituted into (7). Then by matrix inver-

sion we may solve for the reflection and transmission

coefficients R and T.

III. NUMERICAL EXAMPLES

A. Transverse Diaphragm

As the first example, let us consider a perfectly con-

ducting, thin, transverse diaphragm located on the

lower wall of a parallel-plane waveguide as shown in

Fig. 2. The height of this diaphragm is h. The coordi-

nates are chosen that the origin coincides with the base

of the diaphragm. A TEO1 mode wave is incident from

x = ~ toward the diaphragm. Since the diaphragm is

thin and is symmetrical with respect to the x = O plane,

the diffracted current density in the vicinity of the dia-

phragm is also symmetrical. Therefore, we need to cal-

culate only the diffracted current density on the dia-

phragm and on the waveguide walls for x >0.

The scattered wave propagating in the x >0 region

corresponds to the reflected wave, while that propagating

in the x <0 region, together with the incident wave,

corresponds to the transmitted waves. In the case of

propagating TEOI mode only (i.e., X/2 <d <X) we can

put

T= I+R. (20)

Hence T, the (N+ 2)th unknown in (14), may be elim-

inated. Under this circumstance, the incident wave may

be conveniently considered to propagate along the whole

waveguide, instead of only in the x >0 region, and the

reflected wave to propagate from the diaphragm at x = O

toward both the x >0 and the x <O regions. Hence

l~,iv~l in (10) may be replaced by the sum of Z~,N+l and

Zn,N@ in (10) and (1 1), and the integration limits in (13)

may be extended to ( – w , co ). In such cases g~ in (13)

becomes the transverse E-field at a point (x~, y~) in an

infinitely long waveguide, and thus has the simple form

g~ = j2 sin (kYm sin 0) exp (jkz~ cos O). (21)

With all of the matrix elements derived, the solution

of the reflection coefficient R is computed by (7) and is

plotted in Fig. 2 for h = d/2 and ~/2~d~l. Exact solu-

tion, as calculated from the procedure given in Collin

[9], is included for comparison. Also given in the figure

is solution obtained by Yee and Felsen (i.e., YF solu-

tion) [1]. Excellent agreement is observed between the

results from the present approach and the exact solution.

The agreement is better, in the particular range X/2

<d< ~, than that of the YF solution, especially in the

regions near the cutoff frequencies where the YF solu-

tion does not apply.

B. Open-Ended Parallel-Plane Waveguide

Next, we consider an infinitely thin parallel-plane

waveguide with one end open to the free space, as
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Fig. 2. The reflection coefficient of a parallel-plane waveguide with
a transverse diaphragm. (a) Magnitude. (b) Phase.

shown in Fig. 3. A TEOl mode wave is propagating in

the \vaveguide toward the open end. In this case the

“discontinuity” is symmetrical with respect to the axial

plane so that with h/2 <d< 3L/2 the waveguide w-ill re-

tain only the TEo1 mode in the reflected wave. Further-

more, the diffracted current density on the upper wall

is identical to that on the lotver wall. This allows us to

calculate only the current density on the lower wall, and

the reflection coefficient R. In doing so, lm,~ in (8) and

(9) are modified to the following forms:

{[

A(kxn’)
1m,. = l–j? ln— +7–1

‘rr 4 1
}

+ Ho(zj(kd) A(kzn’), w = n. (23)
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Fig. 3. The reflection coefficient of an infinitely thin open-ended
parallel-plane waveguide. (a) Magnitude. (b) Phase.

Also, the x <0 region is occupied by free space and J’ in

(5) vanishes. Hence the transmission coefficient T does

not appear. This requires the dropping of (11) and leav-

ing only N+ 1 unknowns to be solved. In addition since

the di:jcontinuity is everywhere along the waveguide

walls, the point coordinates y~ and y. am all zero; hence

they have been dropped from the 1~,. and g~ in (10),

(13), (22), and (23).

In t le case of the flanged open-ended waveguicle .in

Fig. 4, additional segments (i.e., test points) are needed

to take the diffracted current densities on the flanges

into account. However, it is found that these diffracted

current densities decay very rapidly along the flanges

and, therefore, only a few additional points are neces-

sary. ~Jote that at these additional points the y~ and y.

are not zero and will appear in the additional lm, n

and g~.

The computed reflection coefficients for both flanged

and un flanged waveguides are plotted in Figs, 3 and 4.
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Fig. 4. The reflection coefficient of an open-ended parallel-plane
waveguide with flanges. (a) Magnitude. (b) Phase.

The exact solution for the unflanged waveguide by the

Wiener–Hopf technique [1o] is included for compari-

son. The exact solution for the flanged waveguide is not

available. In its place, Lee’s solution [2] is substituted

since the latter solution appears to be more rigorous than

other approximate solutions for TE modes.

Solutions by other approximation techniques, such

as those by the YFK method [3] and by wedge diffrac-

tion theory [4], are also given in the figures. From these

figures it appears that present approach gives very good

results, especially in the normal operating range of X/2

<d <h. As the spacing d exceeds a wavelength the

reflection coefficients become small and, as a result, the

phase errors in computation become large [cf. Figs. 3(b)

and 4(b) ].

C. Thick Obstacles

Thus far we have considered discontinuities with

sharp edges. In order to show the versatility of the

moment method, thick obstacles of various shapes in a

waveguide are considered. It is noted that for thick

obstacles, and other obstacles in general, the diffraction
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Fig. 5. The reflection coefficients of a parallel-plane waveguide with
obstacles of different shapes. (a) Magnitudes. (b) Phases. The
phases of the coefficients are measured from the centers of the
obstacles.

fields are mot symmetrical on both sides of the obstacle.

Hence in spite of the similarity between some of the ex-

amples in Fig. 5 and the thin transverse diaphragm, the

simplification introduced for the thin transverse dia-

phragm cannot be used here. Instead, the complete for-

mulation given in (7)–(14) is used.

The solutions for five different obstacles are shown

in Fig. 5. No comparisons are given for lack of available

solutions by other methods. However, in view of the

accuracy of the solutions given in the preceding two

examples, it is expected that these solutions are reason-

ably accurate.

IV. DISCUSSION

The above examples have shown that the moment

method, of the point-matching approach and with pulse

basis functions, can be applied to solve scattering prob-

lems in waveguides. The procedure is kept simple so

that the moment method can be applied to discontinu-

ities of any shape. The convergence of this procedure is

assured since the evanescent waves from the discon-

tinuities are normally highly localized (say, kr < 10).
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In the above examples, each segment (i.e., basis func-

tion) for operator elements l~,n in (8) and (9) has been

subdivided into three subsegments, with weighting ap-

proximating a triangle function as suggested by Bar-

rington [6]. In doing so, the l~,n are more accurate and

the number of segments can be reduced by one half

without an apparent increase in error. In fact, in all the

examples above, no more than 30 segments are used on

both the discontinuity and the waveguide walls.

For simplicity and for comparison with the available

exact solutions, only the fundamental TEO1 mode has

been assumed propagating. It is easy to see, however,

that higher TEw modes can also be assumed to propa-

gate without unduly increasing the computation time.

For each additional mode, two field elements j~, cor-

responding to the reflection and transmission coeff-

icients of the additional mode, are needed. The extra

computation is therefore not much more than req’uired

by having two extra segments on the waveguide walls.

Finally, it is to be pointed out that the present

method, as well as most other numerical methods, is

suitabl’e for treating waveguide with electrically small

dimensions. As the guide gets larger, the ray optics

method [1 ]– [4 ] becomes superior.
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Diffraction of a Wave Beam by an Aperture

KAZUMASA TANAKA, MASARU SHIBUKAWA, AND OTOZO FUKUMITSU

Abstract—The diffraction field of a wave beam from a circular
and a rectangular aperture is obtained in the Fresnel region by using
the Huygens-Kirchhoff approximation. The diffraction field in the
Fraunhofer region can be obtained simply by replacing a parameter.

The diffraction field is then expanded into a series of beam mode
functions.

From the field distributions and the expansion coefficients,

wtilch represent the coupling of the incident beam to the various

modes in the diffraction field, the effects of an aperture on the
incident beam can be known. With this mode expansion method, the

conditions for optimum coupling between fundamental modes are

obtained and solved numerically.

1. INTRODUCTION

T

HE output wave beam from optical structures,

like Fabry–Perot resonators or optical transmis-

sion lines, can be described by Hermite–Gaussian

[1] or Laguerre-Gaussian [2] functions.

Apertures, such as irises, are often used as elements of

these structures, but there have been few papers that
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discussed the effects of an aperture on the wave beam.

Only the diffraction losses due to the finite sizes of the

lens, or mirror apertures that are used as elements of

transmission lines [2] or of resonators [3], have been

discussed.

The diffraction from an aperture is one of the funda-

mental problems in electromagnetic field theory and

many detailed theories have been compiled for plane

wave or spherical wave incidence. The main reason why

the diffraction problem for a wave beam has not yet

been discussed may be explained by the complexity of

the beam wave functions. Up to the present knowledge

of the diffraction field of plane waves has been applied

to this case.

But, as is well known, if a wave beam of an optical

structure is incident on another system, a set of modes

of the system is excited or the parameters of the in~cident

wavt beam are transformed into different beam parame-

ters [4]. For example, a thin lens transforms these

parameters from one set to another. These effects {cannot

be explained by the analogy of plane wave diffraction.

For this reason, the diffraction problems of CLwave

beam from a circular and a rectangular aperture are dis-


