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An Application of the Moment Method to
W aveguide Scattering Problems

SIEN-CHONG WU anp Y. LEONARD CHOW

Abstract—A moment method is suggested to solve scattering
problems in waveguides. It takes advantage of the localized nature
of the evanescent waves to assure the convergence of the solutions.
The method chooses the point-matching approach with pulse basis
functions so that it may be versatile and can be applied to discon-
tinuities of an arbitrary shape. To illustrate this method, examples
are given for open-ended parallel-plane waveguides, both flanged
and unflanged, and for waveguides with obstacles of various shapes.
Comparisons are made with solutions by other approaches and,
whenever possible, with exact solutions. The agreements are good.

I. INTRODUCTION

ROBLEMS of scattering by discontinuities in
Pwaveguides have been widely studied in the past

decade. Except for a few special discontinuities,
exact solutions are not available and approximate
methods have to be used. The ray theory has been ap-
plied to the regularly shaped discontinuities in a wave-
guide by Yee and Felsen [1]. A similar theory has also
been applied to open-ended waveguides, both flanged
and unflanged, by Lee [2], Yee, Felsen, and Keller [3]
as well as Rudduck and Tsai [4]. For flanged wave-
guides, Itoh and Mittra have been able to give a more
rigorous solution by a modified residue calculus tech-
nique [5].

All the above approximate methods are restricted to
regular discontinuities such as sharp edges linked by
reasonably long and straight boundaries. A more versa-
tile method is needed for arbitrary boundaries and
closely spaced edges. In open space, the moment method
has been applied to solve scattering problems of obsta-
cles with finite sizes [6]. The extension to scattering by
a semi-infinite plate has recently been made by Morita
[7]. Using a similar procedure, this investigation further
extends the moment method to the closed space inside a
waveguide which has infinitely long walls along the
propagation direction.

The procedure is the following: first, the propagating
wave in a waveguide is considered to be a plane wave
bouncing off the walls of the waveguide. When this
bouncing wave meets the discontinuity, the scattered
field occurs. This field is then decomposed into the re-
flected, transmitted, and evanescent waves. The re-

Manuscript received November 19, 1971; revised June 30, 1972.
This work was supported by the National Research Council of
Canada under Grant A3804.

The authors are with the Department of Electrical Engineering,
University of Waterloo, Waterloo, Ont., Canada.

flected and transmitted waves are again represented by
plane waves with the reflection and transmission coeffi-
cients R and T. The evanescent wave is represented by
the extra induced current density on the conducting
surfaces which is localized at the discontinuity. The
moment method with the point-matching approach [6]
can then be applied to solve the coefficients R and 7" and
the induced current density. The basis functions of the
method are kept simple in the form of unit pulses. The
approach and the basis functions are chosen to prepare
the moment method for an arbitrarily shaped discon-
tinuity. The convergence from such procedure is as-
sured since the effects of the induced currents from the
plane waves are analytically integrable and the basis
functions are needed only to numerically calculate the
effects of the evanescent wave. As the evanescent wave
decays exponentially from the discontinuity, the basis
functions are required to cover only a finite space. This
has the effect of reducing the infinitely long walls of the
waveguide to finite ones.

II. FORMULATION

Let us assume that a TEq mode wave propagatesin a
parallel-plane waveguide of infinite extent. The field
can be considered to be a plane wave bouncing off the
upper and the lower waveguide walls with an angle
6=sin—! (A\/2d) as shown in Fig. 1. The fields of the
plane-wave incident on the lower waveguide wall can
be written as

Ei = sexp [jh(x cos § + v sin 6)] ¢))
and
. . 1 . .
Hi = (—#sin 8 + 9 cos 6) —exp [jk(x cos8 + ysin6)] (2)
n
where 7= (u/€)/? is the intrinsic impedance of the me-
dium in the waveguide. On the lower waveguide wall a

current density

J¢ = £—sin 0 exp (jkx cos 6) 3

=S N

is induced. The current density induced on the upper
wall is identical to that on the lower wall.

If an obstacle is located in the waveguide, a fraction
of the incident field is reflected and the remainder trans-
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Fig. 1. Propagating plane wave in a parallel-plane waveguide.

mitted. For simplicity, we shall limit the spacing be-
tween the two plates d such that all higher modes are
cut off. The current densities induced by the reflected
and transmitted waves, with coefficients R and T, are

2
Jr = 4R —sin 0 exp (—jkx cos 0),
n

x>0,y=0, and y=4d (4)

and
2 . :

Jt = 2T —sin 6 exp (jkx cos 8),
1

x<0,y=0, and y=d. (5)

In addition, a current density J¢ =4/, corresponding to
the evanescent wave exists at, and in the vicinity of, the
discontinuity. Each of these current-density components
contributes to the transverse E-field in the waveguide.
In order to satisfy the boundary condition that tangen-
tial electric field E, vanishes on a conductor, the follow-
ing integral equation is established [6]:

o=2ﬁpwwmwﬂr—/bamo+iﬂwﬂm

+ T + T H (k| r — 2| )d(Rr)  (6)

where r and ¢’ are the coordinates of the field points and
of the source points on the conductor. The integral path
¢ is along the surface of the obstacle and the nearby
waveguide walls and the integral path w is along all
relevant waveguide walls, i.e., to the right of the dis-
continuity for J,*and J,7, and to the left for J.*.

With arbitrary obstacles, (6) cannot be solved ex-
actly. The moment method can, however, be used to ob-
tain an approximate solution. First, we shall choose the
point-matching approach with basis functions in the
form of unit pulses. This is in effect dividing the integral
path ¢ into N segments each with an unknown current
density J, [6]. Substituting (3), (4), and (3) into (6) we
have a linear equation with N42 unknowns, Ji, Jy,

-« -, Jx, R,and T. The required N+2 test field points
are selected on the conductor so that IV of them coincide
with the NV source points at the centers of the segments
along ¢, and another two at distant points along the
walls. Therefore N 42 linear equations are established
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and can be written in the following matrix form [6]:

[onn][fn] = [gn] M

where Ly, n, fm, and g, will be given below.
For the operator elements l,,,, with m=1, 2, . . .,
N+2 and with =1, 2, - - -, N, we have

lm,n = H0(2)(k| Im — tlnl )A(krn,):
2 Alkr,')

I = |:1 —]—(111 + v — 1>:|A(kr,.'),
T 4

ifm=n (9)

with ~»=0.5772157 - - -. In addition, with #=N+1
and N+2 corresponding to R and T, we have

ifm#n (8)

sin 6

Im g1 = “'2—“ [I—(O, ®©, ym) + I1_(0, ©,d — ym)] (10)

sin 0
Iny2 = > [14(—,0,yn) + I (—»,0,d — ya)] (11)
where

b
Ii(a,b,y) = f exp (Fjka’ cos ) H,®

JR(( — wm)? + yH (k). (12)

For incident field elements g, and other induced field
elements f,, we have

sin @
&n = — [I+(0: ©, ym) + I+(07 ©, d— y’m)] (13)
and

n
me, form=1,2,---, N

m = 14

f R, form =N +1 (14)
T, form =N+ 2.

The analytical integrals I, in (10), (11), and (12) are
of a semi-infinite type with very slow convergence. Be-
fore numerical computations they should be converted
into a more convenient form. First, the replacement of
x" by -~x’in (12) changes the integration limits in (11)
into (0,%). Then all the six integrals above have a
similar form of 7.(0, =, v). With X =kx’, X,, = kx,, and
YV =Fy,, or k(d —ya), the integrals can in turn be divided
into two parts, that is
0

I, = exp (+jXncosb) {f exp (47X cos 6)Hy®

Xy

(x4 v)2dx + f exp (+7X cos 6)H,®
1]

(x4 Y2)1/2]dX} . (15)
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It has been shown by Morita [7] that with the lower
sign the second integral of the above can be written as

f exp (—jX cos ) Hy®[(X? + Y2)1/2]dX
0

Y
= _jf exp (—X cos 0)H0<2’[(Y2 — X2)1/2]dX
0

2
+ —exp (— Y cos §)
w

1 < 4 2 cos @ 1 )
» — n —
{2 cos 8 Y Y 2Y cos @

[ o+ 2v0m 44
0

1

YX +'X} (—X owx}
—_— — ) — Cos .
2 T ayP

The last integral in (16) is a standard form of Gauss—
Laguerre quadrature which is easily computable [8].

Also with the upper sign the second integral in (15)
can be reduced to

f exp (X cos ) Hy®@[(X? 4 Y2)l2]dX
1}

=f exp (FX cos ) Hy®[(X? + ¥?)12]dX

-—00

0
_f exp (X cos ) Ho®[(X? + Y2)12]ldX

exp (—7 ¥ sin 6)

sin §
—f exp (—jX cos ) Hy®[(X? + Y2)12]dX. (17)
0

The second term of the reduced form is actually the inte-
gral of the left-hand side of (16). Therefore, with the help
of (16) and (17), the integrals in (10), (11), and (13) are
all convertible to integrals which can be numerically
computed.

In many applications ¥Y=0, and (16) and (17) are
analytically integrable. They are, respectively,

[ e (ix cos @ (x)ax = — (18)
0 sin @
and
” . 2(r — 6)
f exp (jX cos ) HyP(X)dX = ——— - (19)
0 7 sin @

With either analytical or numerical integrations of
(10), (11), and (13), all of the I,.,» and g.. are determined
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and may be substituted into (7). Then by matrix inver-
sion we may solve for the reflection and transmission
coefficients R and 7.

III. NuMERICAL EXAMPLES
A. Transverse Diaphragm

As the first example, let us consider a perfectly con-
ducting, thin, transverse diaphragm located on the
lower wall of a parallel-plane waveguide as shown in
Fig. 2. The height of this diaphragm is k. The coordi-
nates are chosen that the origin coincides with the base
of the diaphragm. A TEq mode wave is incident from
x=c toward the diaphragm. Since the diaphragm is
thin and is symmetrical with respect to the x =0 plane,
the diffracted current density in the vicinity of the dia-
phragm is also symmetrical. Therefore, we need to cal-
culate only the diffracted current density on the dia-
phragm and on the waveguide walls for x> 0.

The scattered wave propagating in the x>0 region
corresponds to the reflected wave, while that propagating
in the x <0 region, together with the incident wave,
corresponds to the transmitted waves. In the case of
propagating TE mode only (i.e., A/2<d<\) we can
put

T=14+R (20)

Hence T, the (N+42)th unknown in (14), may be elim-
inated. Under this circumstance, the incident wave may
be conveniently considered to propagate along the whole
waveguide, instead of only in the x>0 region, and the
reflected wave to propagate from the diaphragm atx =0
toward both the x>0 and the x <0 regions. Hence
Im.v41in (10) may be replaced by the sum of [, 541 and
Im.n421n (10) and (11), and the integration limits in (13)
may be extended to (— «,»). In such cases g, in (13)
becomes the transverse E-field at a point (Xm, y») in an
infinitely long waveguide, and thus has the simple form

(21)

With all of the matrix elements derived, the solution
of the reflection coefficient R is computed by (7) and is
plotted in Fig. 2 for A=d/2 and N\/2<d<A\. Exact solu-
tion, as calculated from the procedure given in Collin
[9], is included for comparison. Also given in the figure
is solution obtained by Yee and Felsen (i.e., YF solu-
tion) [1]. Excellent agreement is observed between the
results from the present approach and the exact solution.
The agreement is better, in the particular range \/2
<d<A, than that of the YF solution, especially in the
regions near the cutoff frequencies where the YF solu-
tion does not apply.

gm = §2 sin (kyn. sin 0) exp (jkxn cos ).

B. Open-Ended Parallel-Plane Waveguide

Next, we consider an infinitely thin parallel-plane
waveguide with one end open to the free space, as
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Fig. 2. The reflection coefficient of a parallel-plane waveguide with ~ Fig. 3. The reflection coefficient of an infinitely thin open-ended

a transverse diaphragm. (a) Magnitude. (b) Phase.

shown in Fig. 3. A TEy mode wave is propagating in
the waveguide toward the open end. In this case the
“discontinuity” is symmetrical with respect to the axial
plane so that with N/2 <d <3\/2 the waveguide will re-
tain only the TEy mode in the reflected wave. Further-
more, the diffracted current density on the upper wall
is identical to that on the lower wall. This allows us to
calculate only the current density on the lower wall, and
the reflection coefficient R. In doing so, /. in (8) and
(9) are modified to the following forms:

bnw = {Ho® (k| @ — 4" | ) + Ho®

AR — 2)2 + @2 AGRR),  mEn (22)
_ g A(kx,")
lm,n—{l—jw[ln 2 +y——1]
+ H0<2>(kd)} Akx,'), m=n. (23)

parallel-plane waveguide. (a) Magnitude. (b) Phase.

Also, the x <0 region is occupied by free space and J* in
(5) vanishes. Hence the transmission coefficient 7" does
not appear. This requires the dropping of (11) and leav-
ing only N+1 unknowns to be solved. In addition since
the discontinuity is everywhere along the waveguide
walls, the point coordinates y., and ¥, are all zero; hence
they have been dropped from the /»,. and g, in (10),
(13), (22), and (23).

In tie case of the flanged open-ended waveguide in
Fig. 4, additional segments (i.e., test points) are needed
to take the diffracted current densities on the flanges
into account. However, it is found that these diffracted
current densities decay very rapidly along the flanges
and, therefore, only a few additional points are neces-
sary. Note that at these additional points the y, and y,
are not zero and will appear in the additional Im»
and gu.

The computed reflection coefficients for both flanged
and unflanged waveguides are plotted in Figs. 3 and 4.
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Fig. 4. The reflection coefficient of an open-ended parallel-plane
waveguide with flanges. (a) Magnitude. (b) Phase.

The exact solution for the unflanged waveguide by the
Wiener—Hopf technique [10] is included for compari-
son. The exact solution for the flanged waveguide is not
available. In its place, Lee’s solution [2] is substituted
since the latter solution appears to be more rigorous than
other approximate solutions for TE modes.

Solutions by other approximation techniques, such
as those by the YFK method [3] and by wedge diffrac-
tion theory [4], are also given in the figures. From these
figures it appears that present approach gives very good
results, especially in the normal operating range of \/2
<d<\. As the spacing d exceeds a wavelength the
reflection coefficients become small and, as a result, the

phase errors in computation become large [cf. Figs. 3(b)
and 4(b)].

C. Thick Obstacles

Thus far we have considered discontinuities with
sharp edges. In order to show the versatility of the
moment method, thick obstacles of various shapes in a
waveguide are considered. It is noted that for thick
obstacles, and other obstacles in general, the diffraction
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Fig. 5. The reflection coefficients of a parallel-plane waveguide with

obstacles of different shapes. (a) Magnitudes. (b) Phases. The
phases of the coefficients are measured from the centers of the
obstacles.

fields are not symmetrical on both sides of the obstacle.
Hence in spite of the similarity between some of the ex-
amples in Fig. 5 and the thin transverse diaphragm, the
simplification introduced for the thin transverse dia-
phragm cannot be used here. Instead, the complete for-
mulation given in (7)—(14) is used.

The solutions for five different obstacles are shown
in Fig. 5. No comparisons are given for lack of available
solutions by other methods. However, in view of the
accuracy of the solutions given in the preceding two
examples, it is expected that these solutions are reason-
ably accurate.

IV. DiscussIiON

The above examples have shown that the moment
method, of the point-matching approach and with pulse
basis functions, can be applied to solve scattering prob-
lems in waveguides. The procedure is kept simple so
that the moment method can be applied to discontinu-
ities of any shape. The convergence of this procedure is
assured since the evanescent waves from the discon-
tinuities are normally highly localized (say, kr <10).
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In the above examples, each segment (i.e., basis func-
tion) for operator elements /., in (8) and (9) has been
subdivided into three subsegments, with weighting ap-
proximating a triangle function as suggested by Har-
rington [6]. In doing so, the [,,., are more accurate and
the number of segments can be reduced by one half
without an apparent increase in error. In fact, in all the
examples above, no more than 30 segments are used on
both the discontinuity and the waveguide walls.

For simplicity and for comparison with the available
exact solutions, only the fundamental TEy; mode has
been assumed propagating. It is easy to see, however,
that higher TEoxy modes can also be assumed to propa-
gate without unduly increasing the computation time.
For each additional mode, two field elements fu, cor-
responding to the reflection and transmission coeffi-
cients of the additional mode, are needed. The extra
computation is therefore not much more than required
by having two extra segments on the waveguide walls.

Finally, it is to be pointed out that the present
method, as well as most other numerical methods, is
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suitable for treating waveguide with electrically small
dimensions. As the guide gets larger, the ray optics
method [1]-[4] becomes superior.
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Diffraction of a Wave Beam by an Aperture

KAZUMASA TANAKA, MASARU SHIBUKAWA, ano OTOZO FUKUMITSU

Abstract—The diffraction field of a wave beam from a circular
and a rectangular aperture is obtained in the Fresnel region by using
the Huygens-Kirchhoff approximation. The diffraction field in the
Fraunhofer region can be obtained simply by replacing a parameter.
The diffraction field is then expanded into a series of beam mode
functions.

From the field distributions and the expansion coefficients,
which represent the coupling of the incident beam to the various
modes in the diffraction field, the effects of an aperture on the
incident beam can be known. With this mode expansion method, the
conditions for optimum coupling between fundamental modes are
obtained and solved numerically.

I. INTRODUCTION

HE output wave beam from optical structures,
Tlike Fabry—Perot resonators or optical transmis-
sion lines, can be described by Hermite—Gaussian

[1] or Laguerre-Gaussian [2] functions.
Apertures, such as irises, are often used as elements of
these structures, but there have been few papers that
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discussed the effects of an aperture on the wave beam.
Only the diffraction losses due to the finite sizes of the
lens, or mirror apertures that are used as elements of
transmission lines [2] or of resonators [3], have been
discussed.

The diffraction from an aperture is one of the funda-
mental problems in electromagnetic field theory and
many detailed theories have been compiled for plane
wave or spherical wave incidence. The main reason why
the diffraction problem for a wave beam has not yet
been discussed may be explained by the complexity of
the beam wave functions. Up to the present knowledge
of the diffraction field of plane waves has been applied
to this case.

But, as is well known, if a wave beam of an optical
structure is incident on another system, a set of modes
of the system is excited or the parameters of the incident
wave beam are transformed into different beam parame-
ters [4]. For example, a thin lens transforms these
parameters from one set to another. These effects cannot
be explained by the analogy of plane wave diffraction.

For this reason, the diffraction problems of a wave
bearn from a circular and a rectangular aperture are dis-



